Thromboembolism with Janus Kinase (JAK) Inhibitor for Rheumatoid Arthritis: How Real is the Risk?

Scott IC, Hider SL, Scott DL

Drug Safety 2018 Jul;41(7):645–53

DOI: 10.1007/s40264-018-0651-5

Background and Objectives

- Two JAK inhibitors baricitinib (BARI Brand name: Olumiant) and tofacitinib (TOF Brand name: Xeljanz) – provide rapid, effective oral treatment for RA and other inflammatory diseases
- Concerns about potential thromboembolic risks with JAK inhibitors
 - Clinical trials with BARI suggest possible increases in thromboembolisms
 - > SPC for BARI was revised to include a warning of developing DVT and PE and that BARI should be used with caution in high-risk patients
 - Post-marketing surveillance with TOF suggest possible increases in PT
- This paper:
 - Reviews available evidence about thromboembolic events with BARI
 - Assesses thromboembolic risk with other JAK inhibitors
 - Considers challenges of unexpected AEs with new RA treatments

Thromboembolism in Absence of RA

Authors	Year	Group	Size	Rate/1000 PY		
White ¹	2003	Normal population	From major studies	1		
Heit ²	2015	Normal populations	From 11 major studies	1–2		
Holmqvist et al. ³	2012	Controls	207 271 controls	2		
Choi et al. ⁴	2013	Controls	95 776 controls	2		
Kim et al. ⁵	2013	Controls	920 697 controls	3		
Ogdie et al. ⁶	2017	Controls	1 225 571 controls	4		

Risk of thromboembolism in the general population and non-RA controls is 1–4 thromboembolic events per 1000 PY

PY, patient years

^{1.} White R. Circulation 2003;107:14–8. 2. Heit JA. Nat Rev Cardiol 2015;12:464–74. 3. Holmqvist ME, et al. JAMA 2012;308:1350–6. 4. Choi HK et al. Ann Rheum Dis 2013;72:1182–7.

^{5.} Kim SC, et al. Arthritis Care Res 2013;65:1600–7. 6. Ogdie A, et al. Eur Heart J 2017. doi: 10.1093/eurheartj/ehx145.

Thromboembolism in Patients with RA

Authors	Year	Group	Size	Rate/1000 PY		
Bacani et al. ¹	2012	RA	813 cases	7		
Holmqvist et al. ²	2012	RA	45 490 cases	6		
Choi et al. ³	2013	RA	9 589 cases	3		
Kim et al. ⁴	2013	RA	92 827 cases	6		
Yusuf et al. ⁵	2015	RA	70 768 RA cases	5		

Background risk of thromboembolism in patients with RA is about 3–7 per 1000 PY

PY, patient years

1. Bacani AK, et al. Arthritis Rheum 2012;64:53-61. 2. Holmqvist ME, et al. JAMA 2012;308:1350-6. 3. Choi HK et al. Ann Rheum Dis 2013;72:1182-7.

4. Kim SC, et al. Arthritis Care Res 2013;65:1600–7. 5. Yusuf HR, et al. Thromb Res 2015;135:50–7.

Thromboembolism with RA Drugs

Authors	Year	Group	Size	Rate/1000 patient-years		
Kim et al. ¹	2015	RA biologics	5 920 cases	5		
Ogdie et al. ²	2017	RA DMARD	31 336 cases	8		
Kim et al. ¹	2015	RA MTX	17 614 cases	4		
Ogdie et al. ²	2017	RA no DMARD	20 426 cases	7		

The impact of biologics and DMARDs on disease risk seems minimal, and the number of thromboembolic events is 4–8 per 1000 patient-years

Overall Risks and Benefits of BARI

- Potential thromboembolic risks with BARI need to be considered in relation to its overall efficacy and toxicity in RA
- NMA of seven Phase 2 and 3 trials (N=3 461) found that:
 - Significantly more patients achieved ACR20 with BARI 4 mg + MTX or other DMARDs versus controls¹
 - OR for achieving ACR20 was clinically important: 3.13 (CI 2.32 to 4.33)
 - Rates of TEAEs were similar between BARI and controls
- Non-systematic reviews supportive of efficacy and relative safety in active RA^{2,3}
- Extension study and integrated analysis of all also confirm safety^{4,5}
 - No new safety concerns to 5.5 years of treatment in 3 492 RA patients treated for 6 637 PY⁶

Thromboembolism with BARI

Authors	Trial	Year	Size	Duration (months)	Thromboembolic events		Deaths			SAEs		
					РВО	BARI 4 mg	РВО	BARI 2 mg	BARI 4 mg	РВО	BARI 2 mg	BARI 4 mg
Fleischmann et al. ¹	RA-BEGIN	2017	588	12	Death from PE	-	3/210	-	0/374	20/201	-	29/374
Taylor et al. ²	RA-BEAM	2017	1307	12	-	Thrombo- phlebitis	1/488	-	3/487	22/488	-	23/487
Dougados et al. ³	RA-BUILD	2017	684	6	_	PE*	2/227	0/229	0/227	11/228	6/229	12/227
Tanaka et al. ⁴	Phase 2	2016	145	3	No events reported	-	0/49	0/24	0/24	1/49	1/24	0/24
Keystone et al. ⁵	Phase 2	2015	301	6			0/98	0/52	0/52	3/98	3/52	0/52
Genovese et al. ⁶	RA-BEACON	2016	527	6			0/176	0/174	1/177	13/175	7/174	18/177
Total					-	-	5/1240 (0.5%)	0/479 (0%)	3/1341 (0.2%)	64/1240 (5.2%)	17/479 (3.5%)	82/1341 (6.1%)

Three thromboembolic events were reported in six BARI trials: one control patient developed a fatal PE; one patient taking BARI 4 mg developed a PE and another developed thrombophlebitis; neither was fatal

PE, pulmonary embolus.

^{1.} Fleischmann R, et al. Arthritis Rheumatol 2017;69:506–17. 2. Taylor PC, et al. N Engl J Med 2017;376:652–62. 3. Dougados M, et al. Ann Rheum Dis 2017;76:88–95.

^{4.} Tanaka Y, et al. J Rheumatol 2016;43:504–11. 5. Keystone EC, et al. Ann Rheum Dis 2015;74:333–40. 6. Genovese MC, et al. N Engl J Med 2016;374:1243–52. Scott IC, et al. Drug Safety 2018 Jul;41(7):645–53

Thromboembolism with other JAK Inhibitors

				Thromboembolic events		Deaths			SAEs		
Authors	rs Trial Year	Size	Controls	Recommended dose	Controls	Recommended dose	High dose	Controls	Recommended dose	High dose	
Tarp et al. ¹	Systematic review of 12 trials	2009–14	5801	-	-	2/1303 (0.2%)	6/1849 (0.3%)	3/2244 (0.1%)	72/1303 (5.5%)	126/1849 (6.38%)	130/2244 (5.8%)

- Assessment of data in FAERs identified²:
 - 18 unique cases of PT for TOF, 16 of which were admitted to hospital
 - OR for PT: 2.46 (95% CI 1.55 to 3.91)
 - 9 cases for RUX
 - OR: 1.46 (0.76 to 2.80)
 - 3 cases for TOF XR
 - > OR: 2.48 (0.80 to 7.71)

Data from FAERs identified increased risks of PT with TOF, TOF XR, and RUX, although these findings should be viewed with caution due to limitations with post-marketing surveillance

Challenges in identifying drugs risks in RA

- Risks of new drugs must be considered against the risks of existing treatments, none of which are completely safe
 - Paracetamol is associated with increased overall mortality and other AEs, including MI¹
 - NSAIDs and corticosteroids associated with serious problems, including death²
 - MTX can cause deaths due to bone marrow failure, interstitial lung disease, and inadvertent overdose but reduces overall mortality^{3–5}
 - Other DMARDs can cause drug-related mortality
 - Biologics have overall beneficial effects with minimal evidence of excess mortality⁶
- Severe ARs and deaths are relatively uncommon with anti-rheumatic drugs, including JAK inhibitors, but clinical trials:
 - To define efficacy are too small to assess all potential harms
 - Often exclude patients more likely to have reactions to drugs

Conclusion

- There are numerically more thromboembolic events in patients receiving BARI than control patients in RA
 - The estimated risk of thromboembolism with BARI (5 events per 1000 PY) is comparable to background risk in patients with RA (3–7 per 1000 PY)
- Given limitations with trial data, large observational studies are needed to
 - Accurately quantify thromboembolic risks attributable to new and existing RA drugs
 - Differentiate from risk attributable to RA or its comorbidities.
- If one JAK inhibitor increases thromboembolic risks, it is likely that others may too
 - Clinicians prescribing JAK inhibitors for RA should use them cautiously in patients with pre-existing potential thromboembolic risks