Q: Can you provide an update on your development status?
A: We have several different clinical-stage research programs currently. First, we are in an ongoing Phase 2/3 clinical trial that is designed as the sole registration trial of an RNA therapy called sepofarsen (QR-110). Sepofarsen is being developed for the treatment of LCA10 in patients who suffer from the p.Cys998X mutation in the CEP290 gene, the most common mutation causing LCA10. The goal of sepofarsen is to repair the underlying defect in the CEP290 RNA and potentially reverse the vision loss associated with the disease. Interim Phase 1/2 trial results showed rapid and sustained improvement in vision in LCA10 patients treated with sepofarsen. In addition, sepofarsen was well-tolerated with a positive benefit/risk profile. As a result of the Phase 1/2 top-line data, we received PRIME Access from the European Medicines Agency, which provides an accelerated pathway for evaluation and approval.
We are also developing QR-421a as a potential therapy for patients with Usher syndrome due to mutations in exon 13 of the USH2A gene. Usher syndrome, as I mentioned briefly before, is a severe rare disease that is the leading cause of combined deafness and blindness. In March 2019 the first patient was dosed in the Phase ½ STELLAR clinical trial for QR-421a. This trial includes patients with Usher syndrome type 2 or non-syndromic retinitis pigmentosa (RP) and we expect interim data in Q1 2020. Additionally, QR-1123 for Autosomal Dominant Retinitis Pigmentosa received both FDA Fast-Track Designation and IND clearance and will start trial enrollment soon.
Lastly, we are actively developing our Axiomer® RNA editing technology that can be used to allow the body to repair its own RNA. The Axiomer platform is positioned to target a wide range of diseases in a highly specific manner. With more than 20,000 disease-causing mutations that can potentially be treated with our Axiomer technology, we have the potential to apply Axiomer to a number of additional genetic rare diseases in the future.
In our recently announced “Vision 2023” strategy, our goal is to develop ProQR’s platform of RNA medicines for patients with inherited retinal diseases. For this plan, our goal is to expand our portfolio to include at least seven new programs to complement our ongoing research as we establish ourselves as leaders for the treatment of genetic blindess diseases.
Q: Can you tell us more about Axiomer and how it works?
A: Our Axiomer technology is a proprietary RNA editing tool that is conceptually similar to CRISPR and other DNA editing technologies, but targets the RNA. Axiomer relies on specialized molecules called Editing Oligonucleotides (EONs) that make a specific targeted modification to RNA to reverse mutations that cause genetic diseases. Because Axiomer RNA editing uses enzymes present in all human cells, there are fewer concerns with off-target genetic alterations that are sometimes seen with DNA editing.
We have already demonstrated in vivo proof-of-concept for Axiomer in a mouse model of Hurler syndrome, presented at the 2017 Oligonucleotide Therapeutics Society (OTS) Meeting in Bordeaux, France.
Q: What can we expect from ProQR in the near future?
A: We expect interim data for the Phase 1/2 STELLAR clinical trial for QR-421a for Usher syndrome expected in Q1 2020. Furthermore, we continue to pursue strategic partnerships to bolster our ability to bring meaningful treatments to patients suffering from rare disease with significant unmet need. For example, throughout the past year, we have entered into several stragetic parnterships to help us continue our research. In February, we partnered with the Foundation Fighting Blindness to develop QR-421a for the vision loss associated with Usher syndrome type 2A. This year, along with EB Research Partnership, we spun out all of our dystrophic epidermolysis bullosa activities into the newly formed Wings Therapeutics. Last year, we signed an exclusive agreement with Ionis to in-license IONIS-RHO-2.5Rx, now QR-1123, for the treatment of adRP.
Total Page Views: 357