6 Lithium-ion Battery Types
June 10th, 2021
There is more than just one kind of lithium-ion battery, and not all are created equal. Here’s a look at six lithium-ion battery types.
Lithium-ion batteries are essential to modern technology, powering cell phones, laptops, medical devices and even electric vehicles.
Manufacturers commonly use lithium carbonate or lithium hydroxide in these batteries rather than lithium metal. Although lithium is a key ingredient in lithium-ion batteries, they also include other metals, such as cobalt, graphite and nickel.
But which lithium-ion battery types are used for which applications? There is more than one type of lithium-ion battery, and not all are created equal. We’ve outlined six lithium-ion battery types below, as well as their compositions and common uses. Read on to learn more about this exciting technology.
1. Lithium cobalt oxide
Also known as lithium cobaltate or lithium-ion cobalt batteries, lithium cobalt oxide batteries are made from lithium carbonate and cobalt. Due to their very high specific energy, these batteries are used for cell phones, laptops and electronic cameras. They have a cobalt oxide cathode and use graphite carbon as their anode material; during discharge, lithium ions move from anode to cathode, with the flow reversing when the battery is charging.
This type of battery has some drawbacks, including a relatively short battery life and limited specific power. Additionally, Battery University notes that these batteries are not as safe as other types. Even so, their characteristics make them the popular choice for cell phones and other portable electronic devices.
2. Lithium manganese oxide
Lithium manganese oxide batteries are also commonly called lithium manganate or lithium-ion manganese batteries and are sometimes referred to as li-manganese or manganese spinel. The technology for this type of battery was discovered in the 1980s, with the first publication on the subject appearing in the Materials Research Bulletin in 1983. The first commercial lithium-ion cells made with lithium manganese oxide as a cathode material were produced in 1996 by Moli Energy.
Lithium manganese oxide batteries are notable for their high temperature stability and are also safer than other lithium-ion battery types. For this reason, they are often used in medical equipment and devices, but they may also be used in power tools, electric bikes and more. It is also possible to use lithium manganese oxide batteries to power laptops and electric powertrain cars.
3. Lithium iron phosphate
Lithium iron phosphate batteries, also known as li-phosphate batteries, use phosphate as a cathode. They benefit from low resistance properties, which enhance their safety and thermal stability.
Other benefits include durability and a long lifecycle — fully charged batteries can be stored with little change to the total lifespan of the battery’s charge. Li-phosphate batteries are often the most cost-effective option as well when their long battery life is taken into consideration. However, the lower voltage of the li-phosphate battery means that it has less energy than other types of lithium batteries.
Accordingly, these batteries are often used in electric motorcycles as well as other applications that need a long lifecycle and significant safety. Electric vehicles often use these batteries as well.
4. Lithium nickel manganese cobalt oxide
Also known as lithium manganese cobalt oxide or NMC batteries, lithium nickel manganese cobalt oxide batteries are made of several materials common in lithium-ion battery types. They include a cathode made of a combination of nickel, manganese and cobalt.
Like other lithium-ion battery varieties, NMC batteries can have either a high specific energy density or a high specific power. They cannot, however, have both properties. This battery type is most common in power tools and in powertrains for vehicles.
The cathode combination ratio is usually 60 percent nickel, 20 percent manganese and 20 percent cobalt. This means that the raw material cost is lower than it is for other lithium-ion battery options, as cobalt can be quite expensive. These batteries may come down in price further in the future, as some battery makers are planning to switch their battery chemistry to a higher percentage of nickel so that they can use less cobalt. This battery type is commonly preferred for electric vehicles due to its very low self-heating rate.
5. Lithium nickel cobalt aluminum oxide
Lithium nickel cobalt aluminum oxide batteries are also called NCA batteries, and are becoming increasingly important in electric powertrains and in grid storage.
NCA batteries are not common in the consumer industry, but are promising for the automotive industry. NCA batteries provide a high-energy option with a good lifespan, but they are not as safe as they could be compared to other lithium-ion battery types and are quite costly. NCA batteries must be accompanied by monitoring devices to ensure driver safety.
Given the consistent use of NCA batteries in electric vehicles, it is possible that demand for these batteries will rise as electric vehicles become more common.
6. Lithium titanate
Finally, lithium titanate, also known as li-titanate, is a class of battery that allows for ever-increasing applications. The main advantage of the li-titanate battery is its remarkably fast recharge time, thanks to its advanced nanotechnology, writes Battery Space.
Currently, manufacturers of electric vehicles and bikes use li-titanate batteries, and there is potential for this type of battery to be used in electric buses for public transportation. However, these batteries have lower inherent voltage, or lower energy density, than other lithium-ion battery varieties, which can present issues with powering vehicles efficiently. Even so, the density of lithium titanate batteries is still higher than other non-lithium-ion batteries, which is a plus.
Applications for these batteries can include military and aerospace uses, and they may also be used for storing wind and solar energy and creating smart grids. Furthermore, Battery Space suggests these batteries could also be used in system-critical backups for power systems.
Which lithium-ion battery is best?
Lithium-ion batteries come in a range of types and have a variety of uses. That means some current lithium-ion batteries are better suited to particular applications than others are. The most important thing is to choose the battery best suited to the task at hand.
It’s also worth noting that the lithium-ion battery industry is constantly changing. Companies and scientists around the world are creating new batteries to either work alongside lithium-ion batteries or supplant them. As these new batteries develop, it will be important to watch which come to the fore.
This is an updated version of an article first published by the Investing News Network in 2014.